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In the framework of the density functional theory (DFT) we develop an approximation in which the energy
of a molecule is expressed as a functional of perturbations of the atomic electron densities. The result depends
on atomic densities, atomic chemical potentials, and hardness kernels that can be found from the solutions of
the appropriate atomic DFT problem. A generalized formulation of the chemical potential (electronegativity)
equalization principle is suggested. We show how the energy functional can be transformed into a function
of the net charges on atoms and discuss the relationship between our approach and the earlier introduced
chemical potential (electronegativity) equalization schemes. We present examples where by approximating
density perturbations with the squares of Slater orbitals, we obtain values for the net charges that are in
reasonable agreement with experiment. This approach can be used for predictions of the transferred charges
in the molecules of any size, and its accuracy can be continuously improved by the use of more accurate
approximations to the density perturbations.

1. Introduction

The density functional theory (DFT) formulated by Hohen-
berg and Kohn1 in 1964 is one of the most powerful tools in
modern studies of many-electron systems. The orbital Kohn-
Sham approach2 represents a successful scheme for a practical
application of DFT. It yields good results for electronic struc-
ture and energy calculations and its accuracy is significantly
improving with the development of new corrections to the
exchange-correlation functionals.3 However, the need to solve
an equation for every electron of the system makes it diffi-
cult to apply this scheme to big molecules and groups of many
atoms or molecules. A second look at basic DFT equations
stimulates the development of approaches that do not require
the decomposition of the electron density into a set of orbitals.
In works of Parr and his collaborators it was shown how to

connect DFT with the ideas of structural chemistry (see ref 4a
and references therein). First, the Lagrange multiplierµ (we
will call it the “chemical potential”) that appears in the DFT
equation was identified with the negative of the electronegativity,4b

the quantity often used to explain charge transfer during the
process of molecular formation (refs 5 and 6). Second, a
definitive scale for the values of the chemical potential was
suggested (see refs 4 and 7). Finally, the empirical electrone-
gativity equalization principle was shown to be the consequence
of the constrained search for the minimum of the energy
functional in DFT.4b Later Berkowitz and Parr8 gave the
definitions for hardness and softness kernels and established
the hierarchy of the response functions which appear in DFT
as the functional derivatives of different orders of the energy
functional. Yang and York9 recently proposed a model for
describing the redistribution of the electron density upon
perturbation by an applied field. They also gave a prescription
for semiempirical numerical calculation of chemical potentials
and hardness kernels using the framework of the electronega-
tivity equalization principle. The developments discussed above
pave the road to the achievement of two goals. The first goal

is to create approximate methods for the calculation of electronic
structures and energies of systems too big for direct application
of the Kohn-Sham scheme. The idea is that by Volterra-type
expansions of the functionals one can obtain the equations for
electron density rather than orbitals, thus avoiding the need to
solve an equation for every electron.
The other goal is the development of simple models that

provide efficient ways for finding the charge distribution in
molecules for the purpose of molecular simulations. In this case
the energy is often written as a function of the powers of net
charges on atoms with the values of the coefficients either taken
from a certain scale or considered to be free parameters (Rappe
and Goddard,10 Rick et al.11). In these models the chemical
potential equilization principle was used to calculate charges
on the molecules. Ricket al.11 demonstrated that such an
approach combined with molecular dynamics leads to a new
dynamical model in which the point charges on the atomic sites
are allowed to fluctuate in response to the environment.
Application of this model to water produced results comparable
with the ones obtained from the best polarizable models, while
the computational cost increase was very small when compared
to the nonpolarizable model. Models introduced by Mortieret
al.12 and Nalewajski13 also used the chemical potential equaliza-
tion principle for calculations of the transferred charges in the
molecules. However, all these models require the use of many
empirical corrections to the atomic values of chemical potentials
(electronegativities) and hardnesses (idempotentials) in order
to get the correct values for the charges. Also, it is not clear
what kind of chemical bonds these models can and cannot
describe (for example, they fail to explain the bonding in
homonuclear molecules). In this article we attempt to provide
answers to some of these questions.
The article has the following structure: in section 2 we obtain

the approximation for the energy functional and formulate the
generalized chemical potential equalization principle. In section
3 we show how the energy functional can be transformed into
the function of charges and compare our equations with the
equations in the earlier introduced models. In sections 4 and 5
we present the results of our calculations, and in section 6 we
summarize the completed work.
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2. Approximation for the Energy Functional

To get the approximate expression for the energy of a
molecule in the framework of DFT, we start with the picture of
a molecule as a collection of slightly perturbed atoms. As we
know, when atoms form a molecule, only valence electrons
change their orbitals considerably, while the inner shell electrons
remain practically unperturbed. This is why we can expect that
the perturbations in the electron probability densities due to
formation of the molecule are small compared to the densities
of the unperturbed atoms. By using the Volterra expansion for
the functionals with these changes of the density on each atom
as small parameters, we can obtain different orders of ap-
proximation for the molecular energy functional. Application
of the variational principle will provide us with a system of
equations, the solution of which will yield the ground state
electron probability density and the energy of the molecule.
Using this approach, we continue to work with the electron

density, the natural variable of DFT, so that the molecular energy
remains a functional of the density but not a function of the net
charges as in the chemical potential equalization models (refs
10, 12, 13). On the other hand, by taking the density
perturbations in the form of some fixed charge distributions,
making it a function of the charges, we can expect that we will
be able to reproduce and possibly improve the previously
obtained results.
We begin the derivation of the expression for the molecular

energy by stating the atomic DFT problem. The energy
functional for unperturbed atomawith the number of electrons
Na is

whereVa(rb) is a nuclear potential,Va(rb) ) -Za/r, andFa(rb) is
the ground state electron density. For a neutral atom it is
normalized by the condition

The true ground state electron densityFa(rb) satisfies the
equation

where the atomic chemical potentialµa appears as a Lagrange
multiplier for the condition (2).
Next we state the DFT problem for the molecule. The energy

functional is

whereVnn represents internuclear interactions andV(rb) is the
total nuclear potential. Due to its additivity, we can write it as
the sum of atomic potentials

The new charge density for each atom can be written as

F′a(rb) represents the perturbations of the atomic electron density
due to the interaction with the other atoms in the molecule. We

hope (see the discussion above) that these perturbations are small
compared to atomic densitiesFa(rb), so that the condition|F′a(rb)|
, Fa(rb) is satisfied everywhere in space.
Due to additivity, the molecular ground state density is

From the condition∫F(rb) drb ) ∑Na it follows that∑∫F′a(rb) drb
) 0.
We now suggest the approximation for the universal func-

tional F[F(rb)]

where

It is clear that (8) represents a very strong approximation,
since the exchange-correlation and kinetic energies are not
additive. The implications of this approximation will be briefly
discussed in the conclusion.
Our next step is to expandF[Fa(rb) + F′a(rb)]. We stop the

expansion at the second-order term because we want to deal
with linear equations forF′a(rb) after we apply the variational
principle to the energy functional.

where from (3)

and

is the hardness kernel, defined in ref 8. The validity of (10) is
justified by the condition|F′a(rb)| , Fa(rb).
We now substitute (5) and (7)-(12) into the expression for

the molecular energy (4) and get

F( rb) ) ∑
a

(Fa( rb) + F′a( rb)) (7)

F[F( rb)] ) F[∑
a

(Fa( rb) + F′a( rb))] =

∑
a

F[Fa( rb) + F′a( rb)] +
1

2
∑
a
∑
b*a

Iab (8)

Iab )∫∫(Fa( rb1) + F′a( rb1))(Fb( rb2) + F′b( rb2))

r12
drb1 drb2 (9)

F[Fa( rb) + F′a( rb)] =

F[Fa( rb)] +∫δF[Fa( rb)]
δFa( rb)

F′a( rb) drb +

1
2∫∫

δ2F[Fa( rb)]
δFa( rb1) δFa( rb2)

F′a( rb1) F′a( rb2) drb1 drb2 (10)

δF[Fa( rb)]
δFa( rb)

) µa - Va( rb) (11)

δ2F[Fa( rb)]
δFa( rb1) δFa( rb2)

)
δ2E[Fa( rb)]

δFa( rb1) δFa( rb2)
) ηa( rb1,rb2) (12)

E[Fa( rb)] )∫Va( rb) Fa( rb) drb + F[Fa( rb)] (1)

∫Fa( rb) drb ) Na (2)

δE[Fa( rb)]
δFa( rb)

) Va( rb) +
δF[Fa( rb)]

δFa( rb)
) µa (3)

E) E[F( rb)] ) Vnn +∫V( rb) F( rb) drb + F[F( rb)] (4)

V( rb) ) ∑
a

Va( rb) (5)

Fa
new( rb) ) Fa( rb) + F′a( rb) (6)
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with the constraint forF′a(rb)

∑
a
∫F′a( rb) drb ) 0 (14)

In (13) the atomic characteristics such as atomic densities
Fa(rb), chemical potentialsµa, and hardness kernelsηa(rb1,rb2)
which themselves can be calculated from the atomic DFT
problem are the parameters. The variables are the perturbations
of the electron probability densityF′a(rb).
A constrained search for the set ofF′a(rb)’s that minimizes (13)

yields the system of equations

for everya, whereµ is the Lagrange multiplier for condition
(14).
As we can see, (15) provides a generalized formulation of

the chemical potential (electronegativity) equalization prin-
ciple: The functional deriVatiVes of the energy functional with
respect to the perturbations of the density on each atom,
constituting a molecule, equalize.
This statement now is a direct consequence of the constrained

search for a functional minimum. The system of equations (15)
must be solved for everyF′a(rb) to give the molecular electron
density and the energy of the system.

3. Application

In order to further simplify the problem, we suggest that the
perturbations of the atomic densityF′a(rb) can be written in the
form

where fa(rb)’s are some known functions, normalized to
unity, andQa’s are the net charges transferred to atoms in the
process of formation of a molecule. Because of the fixed form
of fa(rb)’s, energy in (13) becomes a simple function of the net
chargesQa

whereE0 is the collection of terms independent ofQa and

and

Here we need to stress that (16) must be viewed as another
strong approximation because it cannot reproduce all the
complexity of the real perturbation of the density. For example,
it is absolutely not valid for homonuclear molecules, as it yields
the bonding energy equal to zero because no charge is
transferred from one atom to another. For this case general
equations (15) must be solved.
However, approximation (16) allows us to discuss the relation

of our approach to the earlier introduced chemical potential
(electronegativity) equalization schemes, and, as we show below,
with a good choice of functionsfa(rb) it can provide reliable
results for the net charge distributions in many cases.
The search for the energy minimum results in a system of

linear equations forQa’s and Lagrange multiplierµ

for all a and

Equations 21 have a form similar to the equations of the
Mortier-Ghosh-Shankar (MGS) model,12 but there are some
important differences: in the MGS approachµ*a and η̃a are
treated as independent of the neighbors, whereas in our caseµ*a
depends upon the neighboring atoms through the second term
in (18) andη̃a depends upon the choice offa’s as can be seen
from (19). Also in (21)Jab(r) represents a shielding correction
to the Coulomb point charge interaction, which is not used in
ref 12. As we show in the next sections, these differences lead
to substantial improvements in numerical results compared to
MGS scheme.

4. Results

In order to use (21) for calculations of the net charges, we
first need to specify the form of the functionsfa(rb). Following
Rappe and Goddard,10 we choose them to be the squares of the
spherically symmetric Slater orbitals (we cannot use the point-
charge approximation in which the functionsfa(rb) in (16) are
substituted by delta-functions because it yields the values ofη̃a
) ∞ in (19))

whererba is a vector to the position of nucleusa and

wherena is a principal quantum number of the valent orbital of
atoma andAn is a normalization constant.
The major difference of our approach compared to the

Rappe-Goddard scheme10 is that the values ofµ*a in our case
are dependent on the environment through the second term in
(18), which allows us to obtain correct results for the charges
without making any modifications to the accepted scale of

E[F( rb)] ) E[F′1( rb),F′2( rb),...]) Vnn + ∑
a

Ea[Fa( rb)] +

∑
a
∑
b*a
∫Va( rb) Fb( rb) drb +

1

2
∑
a
∑
b*a
∫∫Fa( rb1) Fb( rb2)

r12
drb1 drb2 + ∑

a

µa∫F′a( rb) drb +

∑
a
∑
b*a
∫[Vb( rb1) +∫Fb( rb2)

r12
drb2]F′a( rb1) drb1 +

1

2
∑
a
∫∫ηa( rb1,rb2) F′a( rb1) F′a( rb2) drb1 drb2 +

1

2
∑
a
∑
b*a
∫∫F′a( rb1) F′b( rb2)

r12
drb1 drb2 (13)

δE[F]
δF′a( rb)

) µ (15)

F′a( rb) ) Qafa( rb) (16)

E(Qa) ) E0 + ∑
a

µ*aQa +
1

2
∑
a

η̃aQa
2 +

1

2
∑
a
∑
b*a

JabQaQb

(17)

µ*a ) µa + ∑
b*a
∫[Vb( rb1) +∫Fb( rb2)

r12
drb2]fa( rb1) drb1 (18)

η̃a )∫∫ηa( rb1,rb2) fa( rb1) fa( rb2) drb1 drb2 (19)

Jab )∫∫fa( rb1)
1

| rb1 - rb2|
fb( rb2) drb1 drb2 (20)

∂E(Qa)

∂Qa

) µ*a + η̃aQa + ∑
b*a

JabQb ) µ (21)

∑
a

Qa ) 0 (22)

fa( rb) ) φa
2( rb - rba) (23)

φa(r) ) Anr
na-1e-úar (24)
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atomic chemical potentialsµa ) -(Ia + Aa)/2. Also, we use
atomic hardness kernels defined in (12) for calculations ofη̃a.
The only free parameter left isúa. In general, its value

probably should be found individually for every atom with the
help of some numerical fitting procedure. However, for this
moment we accept the idea of Rappe and Goddard10 and suggest
thatúa be chosen in such a way thatφa(r) yields the expectation
value ofr equal to the covalent radius of the atom (half of the
bond distance for the appropriate homonuclear diatomic mol-
ecule)

Sixteen alkali-metal halide molecules were studied on the
basis of the described approach. For diatomic molecule the
solution of (21) for the net charges is

wherer12 is the appropriate bond distance, andµ*1, µ*2, η̃1, η̃2,
andJ12 are found from (18), (19), and (20), respectively. The
value forµa in (18) was taken as-(Ia + Aa)/2, whereIa is an
ionization potential andAa is an electron affinity of atoma,
and atomic densities entering (18) were calculated through the
atomic DFT program. We used the Coulomb part of the
hardness kernel to calculate the values ofη̃1 and η̃2. The
calculated results are shown in Table 1 together with the
experimental values of the chargesQexp which were obtained
from the experimental dipole moments.
The importance of these results is that all the coefficients in

(26) are calculated from first principles with no fitting param-
eters used. The results are better for heavier atoms because
for them the condition|F′a(rb)| , Fa(rb) is satisfied better.
Considering all the approximations made, we can conclude that
(21) can be successfully used for net charge calculations. The
improvement of numerical results can be achieved by consid-
eration of kinetic and exchange-correlation energy terms in
hardness kernels as it is suggested in ref 9 and also by a more
“personalized” choice ofúa.

5. Hydrogen

Besides the fact that the expansion (10) is the least accurate
for the hydrogen atom, there are other reasons why the approach

described in the previous section cannot be applied directly to
hydrogen. First, for atoms that have valence electrons withn
g 2 the excessive charge must be located at some distance away
from the nuclei. Equation 25 establishes the correspondence
of this distance to the covalent radius of the atom. However,
for n ) 1 the maximum of the extra density is at the position
of the nucleus, and thereforeúa in (24) simply defines the width
of the charge distribution. This is why a covalent radius is not
a correct scale for the determination ofúa for hydrogen. Also,
the hardness kernel for H is a differential operator (this follows
from the Weizsacker kinetic energy term) which is very sensitive
to the form ofF′a(rb). Still, as we show below, ifη̃H andúH are
treated as free parameters, we can obtain reasonable results for
molecules containing hydrogen using (21).
In Table 2 we present the results of calculations of the charges

on hydrogen for five molecules withη̃H ) 14.98 eV andúH )
1.602 au. Positive values ofQa signify the presence of the extra
electron density on the atom. Again, only the Coulomb parts
of hardness kernels were used to calculateη̃a for all other atoms.
It is remarkable that we can successfully predict a dual

behavior of hydrogen: in the case of LiH it is an acceptor, while
in other cases it is a donor.
The result for CH4 deserves a special discussion. The solution

of (21) for this case is

The sign ofQH is determined by the numerator of (27) (the
denominator must be positive; this follows from the condition
that the energy extremum must be a minimum). The atomic
value forµC is-6.27 eV, and forµH it is -7.18 eV. Therefore
on the basis of these values one can expect that the charge moves
from carbon to hydrogen. But due to the presence of the second
term in (18), the values becomeµ*C ) -11.43 eV andµ*H )
-9.66 eV and the charge is drawn from hydrogen to carbon, in
agreement with experiment.
The above results clearly show that the form of coefficients

in (21) does not need to be changed when hydrogen atoms are
present in the problem. Such a change was proposed by Rappe
and Goddard in ref 10. Also the same scale for the atomic value
of the chemical potential for hydrogenµH ) -(IH + AH)/2 )
-7.18 eV can be used, consistent with the scale used for the
other atoms.

6. Conclusion

Let us summarize the major points of this paper. We derived
the expression for the energy of a molecule which is a functional
of the perturbations on the atomic densities. The parameters
in this energy expression are the atomic densities, atomic
chemical potentials (electronegativities), and atomic hardness
kernels. Application of the variational principle to the energy
functional results in the generalized formulation of the chemical

TABLE 1: Charges on Halidesa

Qexp Qcpe

LiF 0.837 0.731
LiCl 0.731 0.619
LiBr 0.694 0.549
LiI 0.647 0.441
NaF 0.879 0.697
NaCl 0.792 0.697
NaBr 0.757 0.684
NaI 0.708 0.634
KF 0.821 0.706
KCl 0.800 0.742
KBr 0.783 0.752
KI 0.740 0.734
RbF 0.781 0.728
RbCl 0.784 0.760
RbBr 0.768 0.766
RbI 0.753 0.749

a The values of experimental chargesQexp were taken from ref 10.
The values of the calculated chargesQcpe were obtained using the
chemical potential equalization principle.

TABLE 2: Charges on Hydrogena

Qexp Qcpe

LiH 0.768 0.617
CH4 -0.150 -0.191
NH3 -0.267 -0.300
H2O -0.325 -0.282b
HF -0.415 -0.395

a The values of experimental chargesQexp were taken from ref 10.
bWe used the valueúO ) 1.61 au recommended by Ricket al.11 for
oxygen. ForúO ) (2n + 1)/(2RO) ) 2.19 au the charge on H isQH )
-0.120.

QH ) - 1
4
QC )

µ*C - µ*H
4η̃C + η̃H + 3JHH(rHH) - 8JCH(rCH)

(27)

Ra ) 〈φa( rb)|r|φa( rb)〉 )
2na + 1

2úa
(25)

Q1 ) -Q2 )
µ*2 - µ*1

η̃1 + η̃2 - 2J12(r12)
(26)
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potential equalization principle. Second, we showed how the
energy functional can be transformed into an energy function.
The minimization of this energy function results in a system of
linear equations for the net charges on atoms (see (21)).
Two strong approximations were made in deriving (21). One

was done in (8) by leaving out a term due to the nonadditive
character of exchange-correlation energy (incidentally, a similar
approximation was made in the paper of Mortieret al.12). Our
results show that approximation (8) can be used to study charge
transfer in heterogeneous molecules. The second approximation
was to choose a form of the perturbation of the density as the
one given by (16).
Considering the severity of these approximations, it is

encouraging that by using no free parameters we were able to
obtain the values for the net charges that are in reasonable
agreement with experiment.
Previously, a system of equations like (21) was sometimes

written as a result of a Taylor series expansion. In such an
approach it was not clear what the connection was between (21)
and DFT; moreover, it was not obvious what the meaning of
the expansion coefficients was. Our present systematic devel-
opment showed how this system of equations can be related to
DFT and how the parameters in these equations should be
determined.
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